Monday, November 25, 2019

The eNotes Blog 8 Perfect Gift Ideas for BookLovers

8 Perfect Gift Ideas for BookLovers 1. Books on the Wall Its the holiday season- a perfect time to give your book-loving friends and family (or yourself, of course) a little something-something. We put together a curated list of our favorite bookish gifts with dorm life and personal style in mind. If we missed anything literarily amazing, be sure to let us know in the comments below so we can include it in part two. 1. Books on the Wall Books on the Wall are minimalist book posters that display readable text from your favorite works of classic literature, like  Romeo and Juliet,  Alice in Wonderland, and  Pride and Prejudice. 2. Library Card Pillows Missing the stamped library return slips of yesteryear? Us too!  These handmade pillows, brought to you by  dirtsa studio, are screen-printed by hand on cotton canvas, and both front and back look like a classic library checkout card. 3. Custom Book Necklaces Get a favorite book cover on a necklace and never be without it. Etsy seller Compliment can customize the perfect gift for you or the bookworm youre shopping for. 4. Shirts from Out of Print Out of Print has tons of unique designs celebrating our favorite stories. Bonus: Each purchase helps to fund literacy programs and book donations to communities in need while also supporting authors, publishers, and artists. Take all of our money. 5. Book Bags by Krukru Studios Etsy seller Krukru Studios employs professional in-house seamstresses to bring you bookish messenger bags. Covering titles like  The Hobbit,  Fantastic Beasts and Where to Find Them,  Lolita, and  The Bell Jar, these book bags are sure to be one of the most thoughtful (and thoughtfully made) gifts you could give. 6. Literary Board Games Board games are the gifts that keep on giving. Break the ice with newly made, nerdy friends for a night of bibliophilic fun. Peruse Bustles list of 11 literary board games and plan your next game night. 7. Bags by Book Lover Gifts These totes are totes the perfect bag to help you manage your library book haul. Book Lover Gifts also has quite the selection of novel-inspired stationary, accessories, posters, and more. 8. Mugs by Overdue Industries Literature lovers and coffee go together like lions, witches, and wardrobes, and coffee mugs are always a great gift. Overdue Industries has a solid selection of popular and cult bookish mugs  on Etsy. (We also all awwd to death at this Frog and Toad baby onesie.)

Thursday, November 21, 2019

Weddings in The Middle East, Europe and America Research Paper

Weddings in The Middle East, Europe and America - Research Paper Example How the food is prepared and what they eat is significant to the ceremony. Furthermore, there are related religious ceremonies and meals that accompany wedding celebrations with concomitant health connotations. Therefore, this paper will compare weddings among Middle Easterners, Europeans and the Americans discussing their history, food symbolism, religious celebrations and health connotations. To begin with, the history of wedding in the United States is rather interesting. Traditionally, weddings were seen as a means of wealth and not necessarily out of desire or love. In fact, wedding symbolized the financial security that the groom provides to the bride’s family when the couple marries. Furthermore, brides were chosen in line with their economic worth. It precisely had nothing to do with affection. However, at the turn of the nineteenth century, couples began marrying for love (Wallace, 2004). In contrast to American wedding, Arab weddings were arranged marriages. When a young man reaches the appropriate for marriage, his family will go out and search for a potential bride. The process of investigation takes into account the girl’s physical beauty, cleanliness, education, educational level and her qualities as a house wife. Additionally, the groom’s family takes consideration of the behavior and reputation of the bride’s family (Monger, 2004 ). On the other hand, European wedding traditions are largely borrowed from other traditions. It is worthwhile noting that wedding traditions vary among European nations. Traditional European customs involved kidnapping bride and fighting off the bride’s tribesmen using a sword. Thereafter, the groom would hide the bride for one month in an unknown location; a process known as the ‘honeymoon’. However, things changed during the Victorian era. In the contemporary Europe, wedding borrows heavily from Christian practices. Notable is the white dress, denoting ‘white wedding’. The white dress

Wednesday, November 20, 2019

An Assessment of Training - Part II Assignment Example | Topics and Well Written Essays - 250 words

An Assessment of Training - Part II - Assignment Example But having said all these, I have a question or an issue with the selection made for the training program. The training program selected specific people belonging to mid-level management. My question therefore has to do with why not making provision to include at least a sample from all other management levels so that the competency gained could be evenly distributed across the organization. I was particularly happy that you identified the gap that exists in management practice when it comes to the measurement of outcomes and drivers associated with HR. It was therefore a step in the right direction that the proposed training program was made to be around this all important area of organizational development. My major issue with your training program however has to do with the limited use of assessment metrics and modules in knowing or determining the outcome with the program. As quote (Becker, Huselid & Ulrich, 2001) noted, the real measure of the success of a training program is in the extent to which the outcomes match the objectives. It would have therefore been important if you clearly stated your objectives and supported them with a metric that makes it possible for you to assess the training. Going into the future also, I strongly suggest that all training programs can be as thoroughly involving of all employees as

Monday, November 18, 2019

International Marketing - Theory Essay Example | Topics and Well Written Essays - 2500 words

International Marketing - Theory - Essay Example The purpose of laying importance of marketing and marketing plans in the first paragraph was to narrow down the topic towards marketing strategy, its formulation and its purposes for the firm it self. Now when we talk about strategy planning in marketing, we basically tend to make a match between organizational resources and its goals i.e. what an organization can really do by utilizing its resources and what its managers wanted to do (Kotabe 2007). So the strategy basically matches or ties up both ends of the same string so it could be implemented and formulated. If we delve deeper into the topic we see that marketing strategy formulation is of two types; one is based on the General marketing strategy and the other one is based on decision strategy. I have explained them in the next paragraphs to follow. The company I have chosen for this assignment is Dell Inc., and no body can deny its market share, value and prowess up to this date. I will start with the sector analysis and compa ny analysis and then will move on to the marketing strategies. Dell comes under information technology sector. ... The situation started to get better after 2001 and showed a great improvement after year 2003 when the average salary of a computer employee was more than double than what other people were getting from their respective professions. The industry labor force also increased from nil to 3.1% which broke the records in the US labor force industry as it was a growth of more than 75% as compared to previous records. Growth in the information technology industry is there because of the demand factors all around the world. The demand factors included the invention of nano-technology as more and more industries are heading towards this technology, emerging markets like India coming into the field with better and more IT products with better software programs, rise in demand of computers in the Asian markets, companies around the world are looking for cutting edge techs which is only possible if more and more sophisticated software and hardware are being made. Emerging markets in central and S outh America is also one of the reasons for the boom in this sector (Kerin 2008). Apart from this all, another reason for the boom in this sector is the mergers and acquisitions which took place after the dot com crisis. Those mergers and acquisitions compelled companies to pool in their resources and funnel up their energies so to invest in research and development and come up with new products which would give them a competitive edge (Srivastava 2008). This is also a very pertinent cause to explain and relate to the boom in the information technology sector. This rearrangement in the market made suppliers few in numbers which brought major giants on neck n neck competition with each other. This also lowered the switching costs

Saturday, November 16, 2019

High Performance Liquid Chromatography (HPLC) 214

High Performance Liquid Chromatography (HPLC) 214 Introduction High performance liquid chromatography 214 is the most widely used of all of the analytical separation techniques. The reasons for the popularity of the method is its sensitivity, ready adaptability to accurate quantitative determinations, suitability for separating non-volatile species or thermally fragile ones, wide spread applicability to substance that are of prime interest to industry, many fields of science and the public. The applications of chromatography have grown explosively in the last fifty years owing not only to the development of several new types of chromatographic techniques but also to the growing need by scientist for better methods for characterizing complex mixtures. General methodology for the development of new HPLC methods 215-228 HPLC method development follows the series of steps summarized below. Information on sample, objective of separation. Need for special HPLC procedure, sample pretreatment etc. Choice of detector and detector settings. Choosing LC method, preliminary run, estimation of best separation conditions. Optimization of separation conditions. Check for problems or requirement for special procedure. a) Recovery of purified material   Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚   b) Quantitative calibration  Ã‚  Ã‚  Ã‚  Ã‚   c) Qualitative method Validate method for routine laboratory use. A good method development strategy should require only as many experimental runs as are necessary to achieve the desired final result. Finally, method development should be simple as possible, yet it should allow the use of sophisticated tools such as computer modeling if these are available. Before the beginning of method development, it is necessary to review what is known about the sample in order to define the goals of separation. The kinds of sample related information that can be important are summarized in Table-7.1. Table-8.1 Important information concerning sample composition and properties Number   of compounds present in the sample Chemical structures of components Molecular weights of compounds PKa values of compounds UV spectra of compounds Concentration range of various compounds in samples of interest Sample solubility   Ã‚   The chemical composition of the sample can provide valuable clues for the best choice of initial conditions for an HPLC separation. Objectives of separation The objectives of HPLC separation need to be specified clearly include. The use of HPLC to isolate purified sample components for spectral identification or quantitative analysis. It may be necessary to separate all degradants or impurities from a product for reliable content assay. In quantitative analysis, the required levels of accuracy and precision should be known (a precision of  ± 1 to 2% is usually achievable). Whether a single HPLC procedure is sufficient for raw material or one or more formulations and / or different procedures are desired for the analysis of formulations? When the number of samples for analysis at one time is greater than 10, a run time of less than 20 min. will be oftenly important. Knowledge on the desired HPLC equipment, experience and academic training the operators have. Sample pretreatment and detection Samples for analysis come in various forms such as: Solutions ready for injections. Solutions that require dilution, buffering, addition of an internal standard or other volumetric manipulation. Solids that must first be dissolved or extracted. Samples that require pretreatment to remove interference and/or protect the column or equipment from damage. Most samples for HPLC analysis require weighing and / or volumetric dilution before injection. Best results are often obtained when the composition of the sample solvent is close to that of the mobile phase since this minimizes baseline upset and other problems. Some samples require a partial separation ( pretreatment) prior to HPLC, because of need to remove interference, concentrate sample analytes or eliminate â€Å"column killer†. In many cases the development of an adequate sample pretreatment can be challenging than achieving a good HPLC separation. The detector selected should sense all sample components of interest. Variable-wavelength ultraviolet (UV) detectors normally are the first choice, because of their convenience and applicability for most samples. For this reason information on the UV spectra can be an important aid for method development. When the UV response of the sample is inadequate, other detectors are available (flourescence, electrochemical, PDA etc.) or the sample can be derivatized for enhanced detection. Developing the method for the separation Selecting an HPLC method and initial conditions If HPLC is chosen for the separation, the next step is to classify the sample as regular or special. Regular samples means typical mixtures of small molecules (    Table-8.2 Handling of special sample Sample Requirements Inorganic ions Detection is primary problems; use ion chromatography Isomers Some isomers can be separated by reversed-phase HPLC and are then classified as regular samples; better separations of isomers are obtainable using either (1) normal-phase HPLC or (2) reversed-phase separations with cyclodextrin-silica columns. Enantiomers These compounds require â€Å"chiral† conditions for their separations. Biological Several factors make samples or this kind â€Å"special†; molecular conformation, polar functionality and a wide range of hydrophobicity. Macromolecules â€Å"Big† molecules require column packing with large pores  Ã‚  (>> 10-nm diameters); in addition, biological molecules require special conditions as noted above. Table-8.3 Preferred experimental conditions for the initial HPLC separation Separation variable Preferred initial choice Column Dimensions (length, ID) 15 x 0.46 cm Particle size 5 mma Stationary phase C8 or C18 Mobile phase Solvent A and B Buffer-acetonitrile % B 80-100%b Buffer (compound, pH, concentration) 25mM potassium phosphate 2.0 Additives (e.g., amine modifiers, ion pair reagents) Do not use initially Flow rate 1.5–2.0 ml/min Temperature 35-45 ºC Sample Size Volumed >25 mL Weightd B : Polar solvent  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚   a 3.5 mm particles are an alternative using a 7.5 cm column b For an initial isocratic run; an initial gradient run is preferred. c No buffer required for neutral samples; for pH d Smaller values required for smaller-volume columns (e.g., 7.50.46-cm, 3.5-mm column). Table-8.4 Physical properties of silica supports for some C 18 columns Column (mL/mL) Pore diameter (nm) Surface area (m2/g) Percent Porosity Hypersil ODS 12 170 57 LiChrosorb C18 10 355 71 Novapak C18 6 N/Aa N/Aa Nucleosil C18 10 350 69` Symmetry C18 10 335 66 Zorbax ODS 6 300 55 Zorbax Rx, SB, XDB 8 180 50 a N/A : Not available On the basis of the initial exploratory run isocratic or gradient elution can be selected as most suitable. If typical reversed-phase conditions provide insufficient sample retention, suggesting the use of either ion pair on normal phase HPLC. Alternatively, the sample may be strongly retained with 100% acetonitrile as mobile phase, suggesting the use of non-aqueous reversed-phase (NARP) chromatography or normal phase HPLC. Some characteristics of reversed-phase and other HPLC methods are summarized below. Table-8.5 Characteristics of primary HPLC methods Method / description/ columns Preferred method Reversed-phase HPLC Uses water – organic mobile phase Columns: C18 (ODS), C8, phenyl, trimethylsilyl (TMS), Cyano First choice for most samples, especially neutral or non-ionisable compounds that dissolve in water-organic mixtures Ion-pair HPLC Uses water-organic mobile phase a buffer to control pH and an ion pair reagent. Column : C18, C8, cyano. Acceptable choice for ionic or ionizable compounds, especially bases or cations. Normal phase HPLC Uses mixtures of organic solvents as mobile phase Columns: Cyano, diol, amino and silica. Good second choice when reversed-phase or ion-pair HPLC is ineffective, first choice for lipophilic samples that do not dissolve well in water-organic mixtures, first choice for mixtures of isomers and for preparative-scale HPLC (silica best) Getting started on method development One approach is to use an isocratic mobile phase of some average solvent strength (e.g., 50%) organic solvent. A better alternative is to use a very strong mobile phase with (80-100% B), then reduce %B as necessary. The initial separation with 100%B results in rapid elution of the entire sample, but few groups will separate. Decreasing solvent strength shows the rapid separation of all components with a much longer run time, with a broadening of later bands and reduced detection sensitivity. Improving the separation and repeatable separation Generally the chromatographers will consider several aspects of the separation, as summarized in Table-8.6. Table-8.6 Objectives of separation in HPLC method development Objectivesa Comment Resolution Precise and rugged quantitative analysis requires that Rs be greater than 1.5. Separation time Quantitation   Ã‚ £ 2% (1 SD) for assays;  £ 5% for less-demanding analysis;  £15% for trace analysis. Pressure Peak height Narrow peaks are desirable for large signal / noise ratios Solvent consumption   Minimum mobile-phase use per run is desirable. a Roughly in order of decreasing importance but may vary with analysis requirements. Separation or resolution is a primary requirement in quantitative HPLC. The resolution (Rs) value should be maximum (Rs>1.5) favours maximum precision. Resolution usually degrades during the life of the column and can vary from day to day with minor fluctuations in separation conditions. Therefore, values of Rs = 2 or greater should be the goal during method development for simple mixtures. Such resolution will favour both improved assay precision and greater method ruggedness. Some HPLC assays do not require base line separation of the compounds of interest (qualitative analysis). In such cases only enough separation of individual components is required to provide characteristic retention times for peak identification. The time required for a separation (run time = retention time for base band) should be as short as possible and the total time spent on method development is reasonable (runtimes 5 to 10 minutes are desirable). Conditions for the final HPLC method should be selected so that the operating pressure with a new column does not exceed 170 bar (2500 psi) and upper pressure limit below 2000 psi is desirable. There are two reasons for that pressure limit, despite the fact that most HPLC equipment can be operated at much higher pressures. First, during the life of a column, the back pressure may rise by a factor of as much as 2 due to the gradual plugging of the column by particular matter. Second, at lower pressures When dealing with more challenging samples or if the goals of separation are particularly stringent, a large number of method development runs may be required to achieve acceptable separation. Repeatable separation As the experimental runs described above are being carried out, it is important to confirm that each chromatogram can be repeated. When changing conditions (mobile phase, column, and temperature) between method development experiments, enough time must elapse for the column to come into equilibrium with a new mobile phase and temperature. Usually column equilibration is achieved after passage of 10 to 20 column volumes of the new mobile phase through the column. However, this should be confirmed by carrying out a repeat experiment under the same conditions. When constant retention times are observed in two such back-to-back repeat experiments ( ± 0.5% or better), it can be assumed that the column is equilibrated and the experiments are repeatable. Completing the HPLC method development The final procedure should meet all the objectives that were defined at the beginning of method development. The method should also be robust in routine operation and usable by all laboratories and personnel for which it is intended. Quantitation and method validation One of the strengths of HPLC is that is an excellent quantitative analytical technique. HPLC can be used for the quantitation of the primary or major component of a sample (including pure samples) for mixture of many compounds at intermediate concentrations and for the assessment of trace impurity concentrations in matrix. Method validation, according to the United States Pharmacopoeia (USP), is performed to ensure that an analytical methodology is accurate, specific, reproducible and rugged over the specified range that an analyte will be analysed. Method validation provides an assurance of reliability during normal use and is sometimes described as the process of providing documented evidence that the method does what it is intended to do. According to USP, the method validation involves eight steps as given below. Precision Accuracy Limit of detection Limit of quantitation Specificity Linearity and range Ruggedness Robustness Precision and accuracy: Already discussed in chapter-1. Linearity The linearity of the method is a measure of how well a calibration plot of response v/s concentration approximates a straight line, or how well the data fit to the linear equation. Y = aX + b Where ‘Y’ is the response, ‘X’ is the concentration, ‘a’ is the slope and ‘b’ is the intercept of a line fit to the data. Ideally, a linear relationship is preferred (b = 0) because it is more precise, easier for calculations and can be defined with fewer standards. Also, UV detector response for a dilute sample is expected to follow Beer’s law and be linear. Therefore, a linear calibration gives evidence that the system is performing properly throughout the concentration range of interest. Generally in HPLC, if we are using internal standard, then the linearity plot is to be drawn by taking concentration of the analyte on x-axis and the ratio of area under the curve (AUC) of analyte to AUC of internal standard (IS) on y-axis. The resulting plot slope, intercept and correlation coefficient provide the desired information on linearity. A linearity correlation coefficient above 0.999 is acceptable for most methods. Limit of detection (LOD) The limit of detection (LOD) is the smallest concentration that can be detected reliably. The LOD represents the concentration of analyte that would yield a signal-to-noise (S/N) ratio of 3. Limit of quantitation (LOQ) The LOQ is the concentration that can be quantitated reliably with a specified level of accuracy and precision. The LOQ represents the concentration of analyte that would yield a signal-to-noise ratio of 10. LOD and LOQ can be determined by using the following expressions. LOD  Ã‚  Ã‚   =  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚   3 X N / B LOQ  Ã‚  Ã‚   =  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚   10 X N / B Where N is the noise estimate, is the standard deviation of the peak area ratio of analyte to IS (5 injections) of the drugs. B is the slope of the corresponding calibration curve. The LOD and LOQ values determined during method validation are affected by the separation conditions, columns, reagents and especially instrumentation and data systems. Ruggedness Method ruggedness is defined as the reproducibility of results when the method is performed under actual use conditions. This includes different analysts, laboratories, columns, instruments, sources, chemicals, solvents etc. method ruggedness may not be known when a method is first developed, but insight is obtained during subsequent use of that method. Robustness The concept of robustness of an analytical procedure has been defined by the ICH as â€Å" a measure of its capacity to remain unaffected by small, but deliberate variations in method parameters†. The robustness of a method is the ability to remain unaffected by small changes in parameters such as pH of the mobile phase, temperature, percentage of organic solvent and buffer concentration etc. to determine robustness of the method experimental conditions were purposely altered and chromatographic characteristics were evaluated. To study the pH effect on the retention (K1) of the drug, buffer pH is to be changed by 0.2 units. At certain point, retention will increase at any pH above and below of the pH unit. The effect of temperature on the retention characteristics (K1) of the drug is to be studied by changing the temperature in steps 2 ºC from room temperature to 80 ºC and see the effect of temperature on the resolution and peak shape. Effect of percentage organic strength on retention is to be studied by varying the percentage of organic solvents like acetonitrile, methanol etc. from 0 to 2% while the other mobile phase contents are held constant and observe the K1. At certain point decreases in K1 observed with increase in the level of organic solvent. Effect of buffer concentration should be checked at three concentration levels i.e. 0.025 M, 0.05 M and 0.1 M and observe retention time and resolution. Stability To generate reproducible and reliable results, the samples, standards and reagents used for the HPLC method must be stable for a reasonable time (e.g., One day, one week, one month, depending on the need). For example, the analysis of even a single sample may require 10 or more chromatographic runs to determine system suitability, including standard concentrations to create a working analytical curve and duplicate or triplicate injections of the sample to be assayed. Therefore, a few hours of standard and sample solution stability can be required even for a short (10 min.) separation. When more than one sample is analyzed, automated, over night runs often are performed for better laboratory efficiency. Typically, 24 hours stability is desired for all solutions and reagents that need to be prepared for each analysis. Mobile phases should be chosen to avoid stability problems, especially the use of amine additives or specific solvents. For example, mobile phase containing THF (tetra hydrofuran) are known to be susceptible to oxidation, therefore, the mobile phase should be prepared daily with fresh THF. Some buffered mobile phases cause problems for example, phosphate and acetate provide good media for microbial growth. Sodium oxide (0.1%) is often added to the mobile phase buffer to inhibit such growth, adding more than 5% of organic solvent is also effective. Long term column stability is critical for method ruggedness. Even the best HPLC column will eventually degrade and lose its initial performance, often as a function of the number of samples injected. System suitability System suitability experiments can be defined as tests to ensure that the method can generate results of acceptable accuracy and precision. The requirements for system suitability are usually developed after method development and validation have been completed. The criteria selected will be based on the actual performance of the method as determined during its validation. For example, if sample retention times forms part of the system suitability criteria, their variation (SD) during validation can be determined, system suitability might then require that retention times fall within a  ±3 SD range during routine performance of the method. The USP (2000) defines parameters that can be used to determine system suitability prior to analysis. These parameters include plate number (N), tailing factor, k and / or a, resolution (Rs) and relative standard deviation (RSD) of peak height or peak area for respective injections. The RSD of peak height or area of five injections of standard solution is normally accepted as one of the standard criteria. For an assay method of a major component, the RSD should typically be less than 1% for these five respective injections. The plate number and / or tailing factor are used if the run contains only one peak. For chromatographic separations with more than one peak, such as an internal standard assay or an impurity method, expected to contain many peaks, some measure of separations such as Rs is recommended. Reproducibility of tR or k value for a specific compound also defines system performance. The column performance can be defined in terms of column plate number ‘N’ is defined by N = 5.54 (tR / W ½)2 Where ‘tR’ is the retention time of the peak and ‘W ½Ã¢â‚¬â„¢ is the width of the peak at half peak height. The resolution of two adjacent peaks can be calculated by using the formula Rs = 1.18 (t2-t1) / W0.5.1 +W0.5.2 Where ‘t1’ and ‘t2’ are retention times of the adjacent peaks and W0.5.1 and W0.5.2 are the width of the peaks at half height. Rs = 2.0 or greater is a desirable target for method development. The retention factor k is given by the equation. k = (tR – t0) / t0 where ‘tR’ is the band retention time and t0 is the column dead time. The peak symmetry can be represented in terms of peak asymmetry factor and peak tailing factor, which can be calculated by using the following formula. Peak asymmetry factor = B /A Where ‘B’ is the distance at 50% peak height between leading edge to the perpendicular drawn from the peak maxima and ‘A’ is the width of the peak at half height. According to USP (2000) peak tailing factor can be calculated by using the formula T = W0.05 / 2f Where â€Å"W0.05† is the width of the peak at 5% height and â€Å"f† is the distance from the peak maximum to the leading edge of the peak, the distance being measured at a point 50% of the peak height from the base line. High Performance Liquid Chromatography (HPLC) 214 High Performance Liquid Chromatography (HPLC) 214 Introduction High performance liquid chromatography 214 is the most widely used of all of the analytical separation techniques. The reasons for the popularity of the method is its sensitivity, ready adaptability to accurate quantitative determinations, suitability for separating non-volatile species or thermally fragile ones, wide spread applicability to substance that are of prime interest to industry, many fields of science and the public. The applications of chromatography have grown explosively in the last fifty years owing not only to the development of several new types of chromatographic techniques but also to the growing need by scientist for better methods for characterizing complex mixtures. General methodology for the development of new HPLC methods 215-228 HPLC method development follows the series of steps summarized below. Information on sample, objective of separation. Need for special HPLC procedure, sample pretreatment etc. Choice of detector and detector settings. Choosing LC method, preliminary run, estimation of best separation conditions. Optimization of separation conditions. Check for problems or requirement for special procedure. a) Recovery of purified material   Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚   b) Quantitative calibration  Ã‚  Ã‚  Ã‚  Ã‚   c) Qualitative method Validate method for routine laboratory use. A good method development strategy should require only as many experimental runs as are necessary to achieve the desired final result. Finally, method development should be simple as possible, yet it should allow the use of sophisticated tools such as computer modeling if these are available. Before the beginning of method development, it is necessary to review what is known about the sample in order to define the goals of separation. The kinds of sample related information that can be important are summarized in Table-7.1. Table-8.1 Important information concerning sample composition and properties Number   of compounds present in the sample Chemical structures of components Molecular weights of compounds PKa values of compounds UV spectra of compounds Concentration range of various compounds in samples of interest Sample solubility   Ã‚   The chemical composition of the sample can provide valuable clues for the best choice of initial conditions for an HPLC separation. Objectives of separation The objectives of HPLC separation need to be specified clearly include. The use of HPLC to isolate purified sample components for spectral identification or quantitative analysis. It may be necessary to separate all degradants or impurities from a product for reliable content assay. In quantitative analysis, the required levels of accuracy and precision should be known (a precision of  ± 1 to 2% is usually achievable). Whether a single HPLC procedure is sufficient for raw material or one or more formulations and / or different procedures are desired for the analysis of formulations? When the number of samples for analysis at one time is greater than 10, a run time of less than 20 min. will be oftenly important. Knowledge on the desired HPLC equipment, experience and academic training the operators have. Sample pretreatment and detection Samples for analysis come in various forms such as: Solutions ready for injections. Solutions that require dilution, buffering, addition of an internal standard or other volumetric manipulation. Solids that must first be dissolved or extracted. Samples that require pretreatment to remove interference and/or protect the column or equipment from damage. Most samples for HPLC analysis require weighing and / or volumetric dilution before injection. Best results are often obtained when the composition of the sample solvent is close to that of the mobile phase since this minimizes baseline upset and other problems. Some samples require a partial separation ( pretreatment) prior to HPLC, because of need to remove interference, concentrate sample analytes or eliminate â€Å"column killer†. In many cases the development of an adequate sample pretreatment can be challenging than achieving a good HPLC separation. The detector selected should sense all sample components of interest. Variable-wavelength ultraviolet (UV) detectors normally are the first choice, because of their convenience and applicability for most samples. For this reason information on the UV spectra can be an important aid for method development. When the UV response of the sample is inadequate, other detectors are available (flourescence, electrochemical, PDA etc.) or the sample can be derivatized for enhanced detection. Developing the method for the separation Selecting an HPLC method and initial conditions If HPLC is chosen for the separation, the next step is to classify the sample as regular or special. Regular samples means typical mixtures of small molecules (    Table-8.2 Handling of special sample Sample Requirements Inorganic ions Detection is primary problems; use ion chromatography Isomers Some isomers can be separated by reversed-phase HPLC and are then classified as regular samples; better separations of isomers are obtainable using either (1) normal-phase HPLC or (2) reversed-phase separations with cyclodextrin-silica columns. Enantiomers These compounds require â€Å"chiral† conditions for their separations. Biological Several factors make samples or this kind â€Å"special†; molecular conformation, polar functionality and a wide range of hydrophobicity. Macromolecules â€Å"Big† molecules require column packing with large pores  Ã‚  (>> 10-nm diameters); in addition, biological molecules require special conditions as noted above. Table-8.3 Preferred experimental conditions for the initial HPLC separation Separation variable Preferred initial choice Column Dimensions (length, ID) 15 x 0.46 cm Particle size 5 mma Stationary phase C8 or C18 Mobile phase Solvent A and B Buffer-acetonitrile % B 80-100%b Buffer (compound, pH, concentration) 25mM potassium phosphate 2.0 Additives (e.g., amine modifiers, ion pair reagents) Do not use initially Flow rate 1.5–2.0 ml/min Temperature 35-45 ºC Sample Size Volumed >25 mL Weightd B : Polar solvent  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚   a 3.5 mm particles are an alternative using a 7.5 cm column b For an initial isocratic run; an initial gradient run is preferred. c No buffer required for neutral samples; for pH d Smaller values required for smaller-volume columns (e.g., 7.50.46-cm, 3.5-mm column). Table-8.4 Physical properties of silica supports for some C 18 columns Column (mL/mL) Pore diameter (nm) Surface area (m2/g) Percent Porosity Hypersil ODS 12 170 57 LiChrosorb C18 10 355 71 Novapak C18 6 N/Aa N/Aa Nucleosil C18 10 350 69` Symmetry C18 10 335 66 Zorbax ODS 6 300 55 Zorbax Rx, SB, XDB 8 180 50 a N/A : Not available On the basis of the initial exploratory run isocratic or gradient elution can be selected as most suitable. If typical reversed-phase conditions provide insufficient sample retention, suggesting the use of either ion pair on normal phase HPLC. Alternatively, the sample may be strongly retained with 100% acetonitrile as mobile phase, suggesting the use of non-aqueous reversed-phase (NARP) chromatography or normal phase HPLC. Some characteristics of reversed-phase and other HPLC methods are summarized below. Table-8.5 Characteristics of primary HPLC methods Method / description/ columns Preferred method Reversed-phase HPLC Uses water – organic mobile phase Columns: C18 (ODS), C8, phenyl, trimethylsilyl (TMS), Cyano First choice for most samples, especially neutral or non-ionisable compounds that dissolve in water-organic mixtures Ion-pair HPLC Uses water-organic mobile phase a buffer to control pH and an ion pair reagent. Column : C18, C8, cyano. Acceptable choice for ionic or ionizable compounds, especially bases or cations. Normal phase HPLC Uses mixtures of organic solvents as mobile phase Columns: Cyano, diol, amino and silica. Good second choice when reversed-phase or ion-pair HPLC is ineffective, first choice for lipophilic samples that do not dissolve well in water-organic mixtures, first choice for mixtures of isomers and for preparative-scale HPLC (silica best) Getting started on method development One approach is to use an isocratic mobile phase of some average solvent strength (e.g., 50%) organic solvent. A better alternative is to use a very strong mobile phase with (80-100% B), then reduce %B as necessary. The initial separation with 100%B results in rapid elution of the entire sample, but few groups will separate. Decreasing solvent strength shows the rapid separation of all components with a much longer run time, with a broadening of later bands and reduced detection sensitivity. Improving the separation and repeatable separation Generally the chromatographers will consider several aspects of the separation, as summarized in Table-8.6. Table-8.6 Objectives of separation in HPLC method development Objectivesa Comment Resolution Precise and rugged quantitative analysis requires that Rs be greater than 1.5. Separation time Quantitation   Ã‚ £ 2% (1 SD) for assays;  £ 5% for less-demanding analysis;  £15% for trace analysis. Pressure Peak height Narrow peaks are desirable for large signal / noise ratios Solvent consumption   Minimum mobile-phase use per run is desirable. a Roughly in order of decreasing importance but may vary with analysis requirements. Separation or resolution is a primary requirement in quantitative HPLC. The resolution (Rs) value should be maximum (Rs>1.5) favours maximum precision. Resolution usually degrades during the life of the column and can vary from day to day with minor fluctuations in separation conditions. Therefore, values of Rs = 2 or greater should be the goal during method development for simple mixtures. Such resolution will favour both improved assay precision and greater method ruggedness. Some HPLC assays do not require base line separation of the compounds of interest (qualitative analysis). In such cases only enough separation of individual components is required to provide characteristic retention times for peak identification. The time required for a separation (run time = retention time for base band) should be as short as possible and the total time spent on method development is reasonable (runtimes 5 to 10 minutes are desirable). Conditions for the final HPLC method should be selected so that the operating pressure with a new column does not exceed 170 bar (2500 psi) and upper pressure limit below 2000 psi is desirable. There are two reasons for that pressure limit, despite the fact that most HPLC equipment can be operated at much higher pressures. First, during the life of a column, the back pressure may rise by a factor of as much as 2 due to the gradual plugging of the column by particular matter. Second, at lower pressures When dealing with more challenging samples or if the goals of separation are particularly stringent, a large number of method development runs may be required to achieve acceptable separation. Repeatable separation As the experimental runs described above are being carried out, it is important to confirm that each chromatogram can be repeated. When changing conditions (mobile phase, column, and temperature) between method development experiments, enough time must elapse for the column to come into equilibrium with a new mobile phase and temperature. Usually column equilibration is achieved after passage of 10 to 20 column volumes of the new mobile phase through the column. However, this should be confirmed by carrying out a repeat experiment under the same conditions. When constant retention times are observed in two such back-to-back repeat experiments ( ± 0.5% or better), it can be assumed that the column is equilibrated and the experiments are repeatable. Completing the HPLC method development The final procedure should meet all the objectives that were defined at the beginning of method development. The method should also be robust in routine operation and usable by all laboratories and personnel for which it is intended. Quantitation and method validation One of the strengths of HPLC is that is an excellent quantitative analytical technique. HPLC can be used for the quantitation of the primary or major component of a sample (including pure samples) for mixture of many compounds at intermediate concentrations and for the assessment of trace impurity concentrations in matrix. Method validation, according to the United States Pharmacopoeia (USP), is performed to ensure that an analytical methodology is accurate, specific, reproducible and rugged over the specified range that an analyte will be analysed. Method validation provides an assurance of reliability during normal use and is sometimes described as the process of providing documented evidence that the method does what it is intended to do. According to USP, the method validation involves eight steps as given below. Precision Accuracy Limit of detection Limit of quantitation Specificity Linearity and range Ruggedness Robustness Precision and accuracy: Already discussed in chapter-1. Linearity The linearity of the method is a measure of how well a calibration plot of response v/s concentration approximates a straight line, or how well the data fit to the linear equation. Y = aX + b Where ‘Y’ is the response, ‘X’ is the concentration, ‘a’ is the slope and ‘b’ is the intercept of a line fit to the data. Ideally, a linear relationship is preferred (b = 0) because it is more precise, easier for calculations and can be defined with fewer standards. Also, UV detector response for a dilute sample is expected to follow Beer’s law and be linear. Therefore, a linear calibration gives evidence that the system is performing properly throughout the concentration range of interest. Generally in HPLC, if we are using internal standard, then the linearity plot is to be drawn by taking concentration of the analyte on x-axis and the ratio of area under the curve (AUC) of analyte to AUC of internal standard (IS) on y-axis. The resulting plot slope, intercept and correlation coefficient provide the desired information on linearity. A linearity correlation coefficient above 0.999 is acceptable for most methods. Limit of detection (LOD) The limit of detection (LOD) is the smallest concentration that can be detected reliably. The LOD represents the concentration of analyte that would yield a signal-to-noise (S/N) ratio of 3. Limit of quantitation (LOQ) The LOQ is the concentration that can be quantitated reliably with a specified level of accuracy and precision. The LOQ represents the concentration of analyte that would yield a signal-to-noise ratio of 10. LOD and LOQ can be determined by using the following expressions. LOD  Ã‚  Ã‚   =  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚   3 X N / B LOQ  Ã‚  Ã‚   =  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚  Ã‚   10 X N / B Where N is the noise estimate, is the standard deviation of the peak area ratio of analyte to IS (5 injections) of the drugs. B is the slope of the corresponding calibration curve. The LOD and LOQ values determined during method validation are affected by the separation conditions, columns, reagents and especially instrumentation and data systems. Ruggedness Method ruggedness is defined as the reproducibility of results when the method is performed under actual use conditions. This includes different analysts, laboratories, columns, instruments, sources, chemicals, solvents etc. method ruggedness may not be known when a method is first developed, but insight is obtained during subsequent use of that method. Robustness The concept of robustness of an analytical procedure has been defined by the ICH as â€Å" a measure of its capacity to remain unaffected by small, but deliberate variations in method parameters†. The robustness of a method is the ability to remain unaffected by small changes in parameters such as pH of the mobile phase, temperature, percentage of organic solvent and buffer concentration etc. to determine robustness of the method experimental conditions were purposely altered and chromatographic characteristics were evaluated. To study the pH effect on the retention (K1) of the drug, buffer pH is to be changed by 0.2 units. At certain point, retention will increase at any pH above and below of the pH unit. The effect of temperature on the retention characteristics (K1) of the drug is to be studied by changing the temperature in steps 2 ºC from room temperature to 80 ºC and see the effect of temperature on the resolution and peak shape. Effect of percentage organic strength on retention is to be studied by varying the percentage of organic solvents like acetonitrile, methanol etc. from 0 to 2% while the other mobile phase contents are held constant and observe the K1. At certain point decreases in K1 observed with increase in the level of organic solvent. Effect of buffer concentration should be checked at three concentration levels i.e. 0.025 M, 0.05 M and 0.1 M and observe retention time and resolution. Stability To generate reproducible and reliable results, the samples, standards and reagents used for the HPLC method must be stable for a reasonable time (e.g., One day, one week, one month, depending on the need). For example, the analysis of even a single sample may require 10 or more chromatographic runs to determine system suitability, including standard concentrations to create a working analytical curve and duplicate or triplicate injections of the sample to be assayed. Therefore, a few hours of standard and sample solution stability can be required even for a short (10 min.) separation. When more than one sample is analyzed, automated, over night runs often are performed for better laboratory efficiency. Typically, 24 hours stability is desired for all solutions and reagents that need to be prepared for each analysis. Mobile phases should be chosen to avoid stability problems, especially the use of amine additives or specific solvents. For example, mobile phase containing THF (tetra hydrofuran) are known to be susceptible to oxidation, therefore, the mobile phase should be prepared daily with fresh THF. Some buffered mobile phases cause problems for example, phosphate and acetate provide good media for microbial growth. Sodium oxide (0.1%) is often added to the mobile phase buffer to inhibit such growth, adding more than 5% of organic solvent is also effective. Long term column stability is critical for method ruggedness. Even the best HPLC column will eventually degrade and lose its initial performance, often as a function of the number of samples injected. System suitability System suitability experiments can be defined as tests to ensure that the method can generate results of acceptable accuracy and precision. The requirements for system suitability are usually developed after method development and validation have been completed. The criteria selected will be based on the actual performance of the method as determined during its validation. For example, if sample retention times forms part of the system suitability criteria, their variation (SD) during validation can be determined, system suitability might then require that retention times fall within a  ±3 SD range during routine performance of the method. The USP (2000) defines parameters that can be used to determine system suitability prior to analysis. These parameters include plate number (N), tailing factor, k and / or a, resolution (Rs) and relative standard deviation (RSD) of peak height or peak area for respective injections. The RSD of peak height or area of five injections of standard solution is normally accepted as one of the standard criteria. For an assay method of a major component, the RSD should typically be less than 1% for these five respective injections. The plate number and / or tailing factor are used if the run contains only one peak. For chromatographic separations with more than one peak, such as an internal standard assay or an impurity method, expected to contain many peaks, some measure of separations such as Rs is recommended. Reproducibility of tR or k value for a specific compound also defines system performance. The column performance can be defined in terms of column plate number ‘N’ is defined by N = 5.54 (tR / W ½)2 Where ‘tR’ is the retention time of the peak and ‘W ½Ã¢â‚¬â„¢ is the width of the peak at half peak height. The resolution of two adjacent peaks can be calculated by using the formula Rs = 1.18 (t2-t1) / W0.5.1 +W0.5.2 Where ‘t1’ and ‘t2’ are retention times of the adjacent peaks and W0.5.1 and W0.5.2 are the width of the peaks at half height. Rs = 2.0 or greater is a desirable target for method development. The retention factor k is given by the equation. k = (tR – t0) / t0 where ‘tR’ is the band retention time and t0 is the column dead time. The peak symmetry can be represented in terms of peak asymmetry factor and peak tailing factor, which can be calculated by using the following formula. Peak asymmetry factor = B /A Where ‘B’ is the distance at 50% peak height between leading edge to the perpendicular drawn from the peak maxima and ‘A’ is the width of the peak at half height. According to USP (2000) peak tailing factor can be calculated by using the formula T = W0.05 / 2f Where â€Å"W0.05† is the width of the peak at 5% height and â€Å"f† is the distance from the peak maximum to the leading edge of the peak, the distance being measured at a point 50% of the peak height from the base line.

Wednesday, November 13, 2019

Cluniac Monasticism Essay -- History

Cluniac Monasticism Assess the strengths and weaknesses of Cluniac monasticism between the tenth and twelfth centuries. The nature of Cluny lay in the circumstances of it’s foundation. It was endowed with a measure of independence by it’s founder, Duke William, allowing the monks to elect their own abbot, placing the abbey directly under the guardianship of St Peter and the Apostolic See. As a house dedicated to reviving strict Benedictine observance Cluny was not unique, but it was this indepencence, the succesion of talented abbots and it’s organisation set up by Abbot Berno that laid the foundations of the abbey’s later greatness. The independence granted Cluny in it’s foundation charter was esssential in the development of Cluny free from the interference of lay magnates and local bishops. It’s direct dependence on Rome was not initially of great importence; other foundations had beemn bequeathed to the apostles before. However, this was an important foundation upon which later abbots were to build. By seeking papal approval for Cluniac reforms the abbots forged a valuble direct link to the papacy, whilst gain officail public regognition and endorsement of the Cluniac regieme. In obtaining the right to accept monks from other orders in 931 Odo had confirmed the righht of the Cluniacs to reform others houses, while Cluny gained freedom from the local bishops under Abbot Odilo in 998. it was ‘the subsequent growth, under far straiter papal oversight, of Cluny’s exemption from episcopal control in spiritual matters, that did most to consolidate Cluny’s subject houses under itâ⠂¬â„¢s own central authority’ . This meant Cluny was immune to challenges to it’s authority from both without and within the church. Cluny became of particular note to sucessive Popes, with it’s reputation for reform, and the papacy continued to support the cluniacs, with Pope John XIX giving Cluny’s monks complete freedom from interference whereever they were in 1024. However, this would have been nothing without the exemplary spiritual life that was seen to exist at Cluny. The continual use of vocal prayer was popular with the laity, with many wishing to be included in the prayers of the monks. The personal qualities of the abbots were also much admired, as was the way of life practised at Cluny. The cluniac model of benedictine obervence was seen by many by the time of Abb... ... riches of success. The Cluniacs were criticised by those who favoured a more eremetic style of monasticism, and the stricter Cistercians. They were also criticised by laymen and other factions within the church. As an order, their popularity was on the wane by the twelfth century. The main strenghts of cluniac monasticism lay in its independence, it’s early spiritual energy, it’s observence of the benedictine rule and it’s sainly abbots. These provided very well for Cluny for a significant period, but over-growth of the order led to a slackening in observence of the Rule, and with the disasterous abbacy of Pons and a basic shift in religious opinion these strenghts became weaknesses that Bibliography Evans, Monastic Life at Cluny 910-1157 (Oxford University Press, 1931) Ed. Hunt, Cluniac Monasticsm in the central middle ages, (Macmillan, 1971) Lynch, The Medeval Church, (Longman, 1992) Cowdrey, The Cluniacs and the Gregorian Reform, (Oxford, 1970) Lawrence, Medeval Monasticism, (Longman, 1989) Southern, Western Society and the Church in the Middle Ages, (Pelican, 1970) Ed. Holmes, The Oxford Illustrated History of Medeval Europe, (Oxford, 2001)